

Multiparty computation unconditionally secure against Q2

adversary structures

Adam Smith*

Anton Stiglic

December 15, 1998

Abstract

We present here a generalization of the work done
by Rabin and Ben-Or in [16]. We give a proto-
col for multiparty computation which tolerates any
Q? active adversary structure based on the existence
of a broadcast channel, secure communication be-
tween each pair of participants, and a monotone span
program with multiplication tolerating the structure.
The secrecy achieved is unconditional although we al-
low an exponentially small probability of error. This
is possible due to a protocol for computing the prod-
uct of two values already shared by means of a homo-
morphic commitment scheme which appeared origi-
nally in [8].

Keywords: Multiparty computation, general ad-
versary structures, span programs, verifiable secret
sharing.

1 Introduction

1.1 Multiparty computation

Multiparty computation (MPC) is a cryptographic
task that allows a network of participants to emulate
any trusted party protocol. Each player P; starts
with a private input x;. The players run a proto-
col to compute some function g(z1,...,2,). The re-
sult of this function can then be revealed publicly
or privately to some particular player. The proto-
col is deemed secure if cheating parties can obtain
no more information from running the protocol than
they would in the trusted party scenario (in which
each player gives x; to some external trusted party
who then computes g and sends the result to all the
relevant players). Goldreich, Micali and Wigderson
proved that to accomplish MPC it is sufficient to al-

*School of Computer Science, McGill University, Montréal
(Québec), Canada, asmith@cs.mcgill.ca

TDépartement d’Informatique et R.O., Université de
Montréal, Montréal (Québec), Canada, stiglic@iro.umontreal.ca

ways have the value of g revealed publicly and to as-
sume that g is given by an arithmetic circuit (i.e. ad-
dition and multiplication gates) from K™ to K where
K is some finite field.

The first general solution to this problem was given
in [13]. They present a protocol for MPC which
is secure under the assumptions that trapdoor one-
way permutation exists, that the participants are re-
stricted to probabilistic polynomial time (computa-
tionally bounded) and that the number of cheating
parties is bounded above by ¢t where t < n/2. In the
situation where the participants can only cheat pas-
sively (i.e. by eavesdropping) they can remove the
last assumption. In [2] and [7], the assumption of
computational boundedness is removed and replaced
by the assumption that each pair of players is con-
nected by an authenticated secure channel. In this
(non-computational) model they prove that MPC is
possible with active adversaries if and only if t <n/3
and with passive adveraries if and only if ¢ < n/2.

These results were extended in [16] to the scenario
in which a reliable broadcast channel is also avail-
able. In that case active and passive cheaters can be
tolerated if and only if ¢ < n/2. However, to attain
these bounds an exponentially small probability of
error was introduced.

The result of [16] was first extended to more gen-
eral adversary structures by Hirt and Maurer in [14].
However, maintaining an exponentially small proba-
bility of error entailed a superpolynomial loss of effi-
ciency.

We present a more efficient version of an extension
of the [16] protocol using monotone span programs,
following the ideas of [12] *. The relevant definitions
as well as a precise statement of our results are pre-
sented in the remainder of this section.

1.2 Adversary structures and mono-
tone functions

Given a set of players P, an adversary structure
A over P is a set of subsets of players which is
downward-closed under inclusion:

(Be Aand B'C B)=— B' € A.

Normally such a structure is used to represent the
collection of all coalitions of players which a given
protocol can tolerate without losing security: as long
as the set of cheating players is in A, the cheaters
cannot breach the security of the protocol.

Classically, protocols such as those of [16] have tol-
erated threshold structures, which are of the form
A ={B C P : |B| <t} for some t. However, [14]
extends several of these results to more general struc-
tures, using the following definition:

Definition 1 An adversary structure A over P is
said to be Q% if no k sets in A add up to the whole
set P, that is

ﬁBl,BQ,...,BkGAZ BiUByU---UBp =P.

Hirt and Maurer ([14]) extended the results of [2,
16] (see section 1.1) which held for t < n/3 and t <
n/2 to Q3 and Q? structures respectively.

1.2.1 Monotone functions

Definition 2 For a partial order < on sets A and
B, we say that a function f : A — B is monotone
if for x,y € A we have

z<y= f(z) < f(y)

We can define a partial order on {0,1}" by the
rule “x < y iff each coordinate of x is smaller than
the corresponding coordinate of y.” Then a function
f:{0,1}" - {0,1} is monotone if

x <y = f(x) < f()

By identifying {0,1}" with p({1,...,n}), the re-
lation < on {0,1}" corresponds to inclusion (C) in

1Results similar to those in this article have been found
independently in [11]

p({1,...,n}). Then a monotone function f corre-
sponds to a function from p({1,...,n}) to {0,1} such
that A C B = f(4) < f(B).

A monotone function f naturally defines an adver-
sary structure Ay = {B C P: f(B) = 0}.

Given an adversary structure 4 and a monotone
function f, we say f rejects A if f(B) = 0 for all
B e A, that is if A C Ay.

With these definitions in hand we can state the
complexity of the Hirt-Maurer protocols: their gen-
eralization of [16] runs in time m©{1°81°8™) where
m is the size of the smallest monotone formula con-
sisting of majority-accepting gates which rejects the
adversary structure A.

1.3 Monotone span programs

Span programs were introduced as a model of compu-
tation in [15]. They were first used as a tool for multi-
party computation by Cramer, Damgard and Maurer
[12]. In this section we define the concepts related to
monotone span programs relevant to this paper.

Definition 3 A monotone span program (MSP)
over a set P is a triple (K, M,1) where K is a finite
field, M is a dxe matriz over K and : {1,...,d} =
P is a surjective function.

The MSP associates to each subset B C P a subset
of the rows of M: the set of rows [such that 1(l) € B.
This corresponds to a linear subspace of K¢ (the span
of those rows). The monotone function f : p(P) —
{0,1} defined by a MSP is given by the rule f(B) =1
if and only if the “target vector” e = (1,0,0,...,0) is
in the subspace associated with B. If we denote by
Mp the submatrix of M formed of the rows [such
that ¢(I) € B then we get that

f(B) =1 <= €€ Im(M§).

Given a MSP computing f, there is a secret sharing
scheme which tolerates the corresponding adversary
structure Ay. This scheme is explained in section 2.1.

The definition above is sufficient for “secret
sharing”-type protocols such as VSS and for multi-
party computations in which multiplication in the
field is not necessary. For general MPC, however,
we need a stronger notion.

Definition 4 ((due to [12])) A MSP (K, M,) is
said to be with multiplication if there exists a vec-
tor r (called a “recombination vector”) such that

Vb,b' € K¢: (r, Mbx Mb') = (,b*b’)

where ¢ = (1,0,...,0), (-} is the standard in-
ner product on K¢ and for v. = (v1,...,04),W =
(w1, ..., wq), we have Vv ¥ W = (VW1 ..., VgWq)-

In [12] it is proved that for any Q2 adversary struc-
ture A, one can construct a MSP with multiplication
which rejects \A. The MSP can be constructed so it
is linear in the size of the smallest majority-accepting
formula rejecting \A.

Note that a counting argument shows that not all
families of Q2 adversary structures over n players (for
n = 1,2,...) can be rejected by a family of MSP’s
with size polynomial in n.

See the open questions in section 6 for further dis-
cussion.

1.4 Previous work

This work follows the initiative of Cramer, Damgard
and Maurer in [12] for adapting existing threshold
protocols to general adversary structures using mono-
tone span programs. In that paper the results of [13]
and [2, 7] were adapted to Q2 and Q3 structures re-
spectively. We state their genralization of [2, 7]:

Theorem 1 Let A be a Q3 adversary structure and
w some multi-party protocol agreed upon n players.
Let (K, M,4) be a MSP with multiplication rejecting
A and suppose w can be implemented in s steps with
operations over K.

Then there is a protocol for w tolerating A which is
information-theoretically secure and which has com-
plezity polynomial in log| K|, s and the size of M.

1.5 This article

In this paper we adapt the results of [16] to Q? struc-
tures with information-theoretic security. As men-
tioned above, this had already been done by Hirt
and Maurer in [14] without using MSP’s. However,
their protocol ran in time m©@{1°8198 ™) where m is the
size of the smallest monotone formula consisting of
majority-accepting gates which rejects the adversary
structure A.

Our protocol on the other hand is polynomial in the
size of the smallest MSP with multiplication reject-
ing A. Since MSP’s with multiplication are at least
as efficient as majority-accepting formulae (proved in
[12]), our protocol is more efficient than the [14] con-
struction.

The main results are:

Theorem 2 Let A be a Q2 adversary structure on
n players and (K, M,1) be a MSP rejecting A. Sup-
pose a reliable broadcast channel and secure commu-
nication between every pair of players is available.

There is a VSS scheme for n players, tolerating
A, which has error probability < 2% and which has
complezity polynomial in log|K|,n,k and the size of
M.

Theorem 3 Let A be a Q2 adversary structure and
w some multi-party protocol agreed upon n players.
Let (K, M,1)) be a MSP with multiplication reject-
ing A and suppose m can be implemented in s steps
with operations over K. Suppose a reliable broadcast
channel and secure communication between every pair
of players is available.

Then there is a protocol for w tolerating A which
has error probability < 2=% and which has complezity
polynomial in log| K|, s,n, k and the size of M.

Our protocol follows the construction of [16]. We
first present the basic secret sharing scheme using
MSP as well as an information checking protocol.
We then give a protocol for weak secret sharing which
we use to build a protocol for verifiable secret sharing.
Using these tools we present the protocol for general
MPC. For our protocol to be efficient, we change the
product checking protocol of [16] 2. The protocol we
give is polynomial in log|K| whereas that of [16] is
Q(|K|?). We conclude with some open questions.

2 Secret Sharing and Informa-
tion Checking

2.1

Given a MSP (K, M,), we can define a secret shar-
ing scheme which tolerates the adversary structure
Ay induced by the MSP (see section 1.3). Recall
that M is a d x e matrix over the field K and
Y:{1,...,d} = {1,...,n} is an arbitrary function.

Say the dealer has a secret a € K. He extends it to
an e-rowed vector by adding random field elements
P2, -, pe to make a vector a, = (a, pa,...,pe). Let
a = Ma, and let a4 denote the elements of o with
indices in A where A C {1,...,d}. Then the dealer
gives oy to player Py ;. In the end, each P; receives
Qyp—1(4) -

From now on this protocol will be referred to as
SHARE(D, a) where D is the dealer.

Secret Sharing

2The protocol given here was published in a different con-
text (computational proofs of knowledge) in [8]. We indepen-
dently “discovered” a slightly different version in 1998.

Lemma 4 SHARE is a secret sharing scheme secure
against Ag. That is, no coalition in Ay can learn any
information about the secret but any set of players not
in Ay can reconstruct it.

Proof: See[12]. O

2.2 Information Checking

The protocol in this section is based on [16]. All com-
putations are done over F = GF(3F) where k is the
security parameter. We require that 3¢ > |K|?. This
allows the encoding of any set of shares from the se-
cret scharing scheme induced by the MSP (K, M,).

We will use in the sequel a Guaranteed Information
Checking (GIC) protocol:

Pre: D has already sent INT his secret s € F'.

Post: INT is guaranteed that an honest R (D may
be dishonest) will always (i.e with very high
probability) accept his value for s. Moreover,

no information about s is leaked as long as D
and INT are honest.

Protocol: GIC-Generate(D — INT — R, s)

1. D makes 2k vectors (y;,b;,c;) such that
b; € F — {0},3/,’ €r F and ¢; = s + by;.
He sends s and the y; to INT and sends
the check vectors (b;,¢;) to R.

2. INT picks a random set I C {1,...,2k}
such that |I| = k and broadcasts I.

3. R broadcasts the check vectors (b;, ¢;) with
i€l

4. D checks whether or not this is indeed what
he sent to R. If so, he broadcasts his
approval. If not, he creates a new triple
(y,b,c) such that ¢ = s + by and b # 0. He
sends y to INT and broadcasts the single
check vector (b, c).

5. Based on what he has seen, INT “guesses”
whether or not R will now accept his value.
If D approved in the previous step then
INT decides “YES” if and only if R’s pairs
all agreed with the values INT possesses.
If D disapproved and created a new check
vector, INT outputs “YES” if and only if
¢ = s + by actually holds.

6. If INT thinks his value will be accepted by
(an honest) R he broadcasts his approval.
If not, INT asks D to broadcast s.

Protocol: GIC-Authenticate(INT — R, s).

1. INT sends s along with either {y; : ¢ & I'}
or y (depending on what occurred at step
4) to R.

2. R accepts if any one of the y;’s agrees with
her corresponding pair (b;, ¢;), or if y agrees
with (b, ¢).

Notice that at the end of GIC-Generate, INT is
guaranteed (with high probability) that an honest R
will accept his value should he send it to R later on.
Also notice that if D and INT are honest, no other
party will gain any information about s (including
R).

Lemma 5 The GIC protocols have error probability
less than 2%,

Proof: See [16]. O

3 Weak Secret Sharing

This WSS scheme comes (essentially) from [16].

Before describing the protocol note that we will
refer to the WSS of a value a, by D, as[a]}y . A similar
VSSed value will be denoted [a]}, and a verifiably
shared secret belonging to no particular player will
be written [a]" .

From now on we will always assume that the MSP
being used is Q2, that is we assume that the adversary
structure Ay induced by the MSP is Q2.

The WSS scheme is in two parts: the commitment
protocol (WSS) and the opening protocol (WSS-
OPEN).

Pre: The dealer D has a secret a € K.
Post: D has shared a such that either

e The shares the honest players hold are con-
sistent with a single value which D can re-
veal, or

e The shares are inconsistent and D will al-
ways be caught and disqualified during the
WSS-OPEN protocol.

Moreover, an honest D will never be disqualified.
Protocol: WSS(D,a)

1. SHARE(D, a)

2. For every i # j: GIC-Generate(D — P; —
Pj, a¢—1(i)).

Notice this protocol guarantees P; that at some
later time he can transmit his share to P; and
she will be convinced that D indeed gave him

Ot¢—1(i).

Based on this protocol we can define a weakly
shared value to be a value a which a dealer D has
shared (not necessarily correctly) such that GIC has
been run for every pair (P;, P;) with ¢ # j.

We now give the opening protocol.

Pre: a is weakly shared by D.

Post: There is a single value a which D can reveal.
All the honest players will output the same value,
which will be either a or null. They will output
null only if D has acted dishonestly in sharing
or revealing the secret.

Protocol: WSS-OPEN(D, [a]g’)

1. D broadcasts the vector a, he created dur-
ing the SHARE protocol.

2. Each P; runs GIC-Authenticate with P;
(Thus P; obtains avy-1(; if P; is honest and
rejects the value if P; tries to cheat. In
the end, an honest P; will have obtained
ap where f(6) = 1, so he can reconstruct
the secret if the shares of honest players are
consistant.)

3. If for any ¢ such that P; accepted P;’s value
there is an inconsistency (i.e. ay-1 #
My-1(3a4) then P; accuses D.

4. If the set of accusers is not in the adversary
structure (i.e. f({accusers}) = 1) then D
is disqualified. Otherwise his value (that is
the first coordinate of a,) is accepted.

Notice that D’s cooperation is essential to opening
the commitment and that if need be, D can open his
WSS only to a single player P; by having all players
send information only to F;.

Lemma 6 For any MSP whose adversary structure
Ay is 2, the pair of protocols (WSS, WSS-OPEN) is
an Ag-secure weak secret sharing scheme with error
probability exponentially small in k.
3.1 Linear operations on
shared values

weakly

It is clear that a WSSed value can be multiplied by
any constant A: each INT multiplies his share by A
and each R multiplies each of his pairs (b,c) by A.
Denote such a multiplication by [Aa]}y < A x[a]}y.

To add two WSSed values belonging to the same
dealer, each player adds his shares of the two se-
crets to obtain his share of their sum. Then do GIC-
Generate(D — P; — Pj,7y,-1(;)) where 7 is the vec-
tor of shares of the sum. The result is a WSS of the
sum. Denote this by [a + b]% « [a]}} + [bo]IY.

Remark: If D does not commit a properly but
does commit b properly, he will be caught as a cheater
if he opens a+b. This yields a simple zero-knowledge
proof that a value is correctly committed by WSS.
Have D pick b at random and commit to b and then
use the preceding protocol to obtain [a + b]!¥". Then
flip a coin and have him either open b or a+b depend-
ing on the outcome. If he was badly comitted to a he
will be caught with probability 1/2. Repeat the pro-
tocol k times to get exponentially small probability
of error.

4 Verifiable Secret Sharing

Verifiable secret sharing is a primitive introduced in
[9]. The scheme we give comes essentially from [16].

Pre: The dealer D has a secret a € K.

Post: D is committed to a unique value which can be
efficiently recovered without his help. Moreover,
each player has committed to his share by means
of a WSS. The shares of all players at the top
(VSS) level are consistent. The shares of honest
players at the lower (WSS) level are consistent.

Protocol: VSS(D,a)

1. SHARE(D,).
2. Forl =]., ..,d do WSS(Pw(l),al)
3. For j=1,..,kn do:
(a) D chooses ¢\ €g K
(b) SHARE(D, ¢9)) (yielding a random
vector ¢t and shares 7 ... ,753))
(c) Forl=1,..,d do:
o WSS(Pyy, 1)
« b’ + alp,, hl(ﬂ)]}/";(t) +
[l 2.,
4. For j =1,..,kn do:
(a) Pj mod n
the result.
(b) Heads: Let
e b= c
(4)

e b, =c;

flips a coin and broadcasts

e 3= 7(1‘)
Tails: Let

.b:a+c(j)
.b*:a*_i_c:(kj)

c) D broadcasts b,.

Each P; checks if ﬂw—l(i) = M¢—1(i)b*.
If not, P; accuses D. D must then
broadcast all information given to F;,
that is ay-1(;) and 'yfﬂl(i) for all j. P
is removed from the VSS protocol (if D
does not broadcast the requested infor-
mation, he is deemed corrupt).

For 1 = 1,.,d do WSS-
OPEN(Py(),[8]") (as long as
Py () remains in the protocol).

If Py gets caught in WSS-OPEN or
if the value he reveals is inconsistent
with the b, broadcasted by D then he
is deemed corrupt and is removed from
the protocol. All his shares of @ and of
all the ¢() are then broadcasted by D.

5. If the set of participants who are removed
from the protocol (at any step) is qualified
(i-e. not in the adversary structure) or if D
broadcasts inconsistent information then D
is deemed corrupt and the VSS is consid-
ered failed. Otherwise the VSS is deemed a
success.

Note that as long as no errors occur in the sub-
protocols, the only way for D to succeed in pass-
ing off inconsistent shares for a is to correctly
guess all the coin flips. Since at least one player
is honest at least k of the coin flips are fair and
so the failure probability is below 27*.

Based on this protocol we can define a wverifiably
shared value to be a value a such that every player is
committed to his share of a via WSS. Moreover, the
shares of all players at the top level must be consistent
as must the shares of honest players at the bottom
(WSS) level.

The opening protocol is VSS-OPEN:

Pre: a is a verifiably shared value.
Post: All honest players output a.
Protocol: VSS-OPEN([a]")

1. Each player opens his WSS to his share of
the secret.

2. a is reconstructed from any qualified set of
players who opened their WSS succesfully
or whose shares had been broadcast in the
VSS protocol.

Notice that no false shares can be contributed
since any bad WSS’s would have been detected
(with high probability) in the VSS protocol.
Moreover, all honest players will reveal their se-
cret correctly and so a qualified set of shares is
available for reconstruction.

Also notice that D’s participation is not neces-
sary and that the OPEN protocol works for any
verifiably shared secret.

Lemma 7 For any MSP whose adversary structure
Ay is Q2, the pair of protocols (VSS, VSS-OPEN)
forms an Ag-secure VSS scheme with error probabil-
ity exponentially small in k.

This proves theorem 2.

4.1 Linear operations on verifiably

shared values

It is possible to perform linear operations on a veri-
fiably shared value by performing the corresponding
operations on the shares (committed to via a WSS).
In the case of VSS, it is not necssary that the secrets
being added belong to the same dealer or indeed to
anyone at all.

4.2 Converting WSS to VSS

A shared value [a]}¥ can be converted to [a]}, by

throwing away the check vector information of the
GIC protocols and considering the WSS as a simple
secret sharing. The VSS protocol can then be started
from step 2. The cooperation of the dealer is required
for converting his WSS to a VSS.

5 Multi-Party Computation

The protocol for computing a function
g(z1,22,...,2,) where z; is the input of PF;
follows the basic outline of [2, 7, 16]. Before the
computation begins, the players decide on an arith-
metic circuit over K which computes g. Each player
commits to his input via a VSS [z;]},. The players
then evaluate the circuit gate by gate to eventually
end up with [g(z1,Z2,...,7,)]V. This commitment
is then opened publicly.

We already discussed how to achieve a multi-party
computation for addition and multiplication by a con-
stant, so all that is missing now is a multi-party mul-
tiplication protocol.

5.1

We start by describing a protocol VSS-CP used by a
dealer to prove that three secrets [a]}), [b]}, and [c]}
satisfy ab = ¢. This protocol replaces the [16] proto-
col that used the multiplication table of the field K.
The [16] protocol is insufficient since it runs in time
Q(|K|?) whereas we require a protocol polynomial in
log | K|. We require this since it may be that the only
polynomial sized MSP’s for a given adversary struc-
ture happen to be over large fields (see open questions
in section 6 for further discussion).

The protocol given here appeared in [8, 4], for com-
mitments based on the discrete logarithm problem.
As it appears here it works for any homomorphic
commitment scheme (i.e. one which allows addition
of secrets).

Checking a product

Pre: The dealer has [a]¥), [b]% and [c]% where ab = c.

Post: Every participant, knowing only shares of
[a]¥), [b]Y) and [c]}, will be convinced (with very
small probability of error) that ab = c.

Protocol: VSS-CP(D,[a]¥,[b]%,[c]%)

1. Repeat for j = 1,....kn,
(a) D chooses b' €g K and computes ¢’ =
ab'.
(b) D commits himself to b’ and ¢’ by com-
puting
o [V']¥ « VSS(D,V)
o [c']¥ « VSS(D,¢)
(c¢) The participant Pjmodn flips a coin:
i. If Heads:
e The participants open [b']}.
e They collectively compute [ab’ —
cIp V' * [a]p — [1H.
e They open this commitment and
check it is 0.
ii. If Tails:
e The participants collectively com-
pute and open [b + b']},.
e They collectively compute [a(b +
b) = (c+c)]p « (b+V) x[a]p —
[']h — [e]p-

e They open this commitment and
check it is 0.

Analysis: If in fact ¢ = ab, the verification in steps
1(c)i and 1(c)i will always be successful. On
the other hand, if ¢ # ab, there are two cases.
First, if in fact D chose ¢! = ab’, in step 1(c)ii
the participants would find that ¢+ ¢’ # ab+ab'.
Second, if ¢ # ab but ¢’ # ab', the verification
in step 1(c)i would fail. The protocol VSS-CP
thus provides a proof to each honest player with
probability of error less then 2~%. Moreover this
proof is zero-knowledge in that the information
revealed is never enough to reveal any informa-
tion about ¢, a or b.

5.2 The Multiplication protocol

This protocol is the multiplication protocol for active
adversaries in [12]. It assumes that the MSP being
used has multiplication (see section 1.3 for details).

Pre: We have [u]V,[v]".

Post: We obtain [uv]Y, that is uv is a verifiably
shared secret.

Protocol: MULT([u]V,[v]V) We will denote by pu
and v the vectors that share v and v respectively.

1. Forl =1,..,d do
* [Nl]}/,/(l) A [M!]Z,‘Ez)
o il « Wy
(see section 4.2 for how to do this).
2. Forl=1,...,d, do:
e Player Py ;) computes w; 1= pv
b [M]Z(z) + VSS(Pyy,wr)
¢ Run

CP(Pyqy, [1ulyiy: [y [wl]q‘/j(lil)’
so as to prove to everybody that his
commited value wy is in fact pv;.

3. Forl=1,..,ddo

e Collectively compute

VSS-

[uo]” = ry [wl]t‘/j(l) tootrax [wd]t‘;(d)a

where r = (71, ...,74) is the recombina-
tion vector (this is a simple linear com-
bination and can be done as in section
4.1).

If at any stage of the computation, a participant
is detected as beeing a cheater, he is excluded
from the protocol. The only problem that may
arise is in step 1, since the participation of the
dealer is necessary to convert a WSS to a VSS.

If this ever happens, we simply reset the proto-
col to the input distribution stage, the remain-
ing players open the cheaters’ VSSed inputs and
then they restart the protocol. This will prolong
the protocol by a factor of at most n.

Since uwv is now a verifiably shared secret, it can
be efficiently opened by the honest players using
VSS-OPEN.

Notice the protocol given has no inherent proba-
bility of error. Its probability of error is at most
the sum of the error probabilities of its subpro-
tocols. As each of these has error probability
exponentially small in k and is executed polyno-
mially many times, the error probability remains
exponentially small in k.

This completes the proof of theorem 3.

6 Open questions

1. It has not yet been proven whether MSP’s with

multiplication are super-polynomially more effi-
cient than majority accepting circuits (or for-

bottleneck is a primitive from distributed com-
puting known as Byzantine Agreement (BA).
Although an efficient asynchronous BA proto-
col exists for threshold structures with ¢t < n/3
(from [6]), the proof of correctness given there
does not carry over to general structures.

Very few results exist which connect the size of
the field used in an MSP to the size of the ma-
trix M. Although one can pass from K to a
subfield with blowup only quadratic in the de-
gree of the extension [10], it is possible that cer-
tain functions have polynomial size MSP’s which
work only over unmanageably large prime fields.

Acknowledgements

We would like to thank Claude Crépeau for his sup-
port and many helpful comments, as well as for
suggesting this area of study, as well as Ronald
Cramer and Ivan Damgard for their comments on
the manuscript.

mulae) for computing max-Q? functions®. In

[12], a super-polynomial gap has been proved for R eferences

general MSP’s (which don’t necessarily have the

multiplication property). An interesting ques- 1] Proceedings of the Twentieth Annual ACM Sym-

tion is to determine how MSP’s with multipli-
cation perform as compared to MSP’s without
multiplication.

posium on Theory of Computing, Chicago, Illi-
nois, 2—4 May 1988.

One thing which is known is that schemes based ~ [2] M. Ben-Or, S. Goldwasser, and A. Wigderson.
on MSP’s with multiplication (or even with Completeness theorems for non-cryptographic
strong multiplication) are at least as efficient as fault-tolerant distributed computation (ex-
those based on threshold formulae. In particu- tended abstract). In ACM [1], pages 1-10.
lar this implies that the protocol given here is at
least as efficient as the one in [14]. Thisis proved [3] M. Ben-Or, B. Kelmer, and T. Rabin. Asyn-
in [12]. chronous secure computations with optimal re-
silience (extended abstract). In Proceedings
. No results have so far been published which ex- of the Thirteenth Annual ACM Symposium on
tend threshold results other than [13], [2], [7] and Principles of Distributed Computing, pages 183—
[16]. Although it would seem that the ideas from 192, Los Angeles, California, 14-17 Aug. 1994.
[12] extend more or less directly to many dis-
tributed threshold protocols, this is not the case [4] J. Boyar, D. Chaum, I. Damgard, and T. Peder-
for asynchronous protocols. sen. Convertible undeniable signatures. In A. J.
In asynchronous systems, MPC is possible tol- Menezes and S. A. Vanstone, editors, Advances
erating any active Q® adversary structure (by in Cryptology—CRYPTO ’90, volume 537 of
extending results of [5, 3]). However, no Lecture Notes in Computer Science, pages 189—
polynomial-time protocol currently exists. The 205. Springer-Verlag, 1991, 11-15 Aug. 1990.
3A max-Q? adversary structure is one to which no more [5] G. Bracha. Asynchronous Byzantine agree-

sets can be added without it losing the Q2 property. A max-
Q2 function is one whose associated adversary structure A £ is
max-Q?

ment protocols. Information and Computation,
75(2):130-143, Nov. 1987.

[6]

[7]

8

[10]
[11]

[12]

[13]

[14]

[15]

R. Canetti and T. Rabin. Fast asynchronous
Byzantine agreement with optimal resilience (ex-
tended abstract). In Proceedings of the Twenty-
Fifth Annual ACM Symposium on the Theory of
Computing, pages 42-51, San Diego, California,
16-18 May 1993.

D. Chaum, C. Crépeau, and I. Damgard. Mul-
tiparty unconditionally secure protocols (ex-
tended abstract). In ACM [1], pages 11-19.

D. Chaum, J.-H. Evertse, and J. van de Graaf.
An improved protocol for demonstrating posses-
sion of discrete logarithms and some generaliza-
tions. In D. Chaum and W. L. Price, editors,
Advances in Cryptology— EUROCRYPT 87, vol-
ume 304 of Lecture Notes in Computer Science,
pages 127-141. TACR, Springer-Verlag, 1988,
13-15 Apr. 1987.

B. Chor, S. Goldwasser, S. Micali, and B. Awer-
buch. Verifiable secret sharing and achieving si-
multaneity in the presence of faults (extended
abstract). In 26th Annual Symposium on Foun-
dations of Computer Science, pages 383-395,
Portland, Oregon, 21-23 Oct. 1985. IEEE.

R. Cramer. Personal communication, Aug. 1998.

R. Cramer, I. Damgard, S. Dziembowski,
M. Hirt, and T. Rabin. Efficient multiparty com-
putations with dishonest minority. To appear in
EUROCRYPT ’99. Original version written Oct.
1998.

R. Cramer, I. Damgaird, and U. Maurer.
General secure multi-party computation from
any linear secret-sharing scheme. Most re-
cent version available from Ronald Cramer at
http://www.inf.ethz.ch/personal /cramer, 1998.

O. Goldreich, S. Micali, and A. Wigderson. How
to play any mental game or a completeness the-
orem for protocols with honest majority. In Pro-
ceedings of the Nineteenth Annual ACM Sympo-
sium on Theory of Computing, pages 218229,
New York City, 25-27 May 1987.

M. Hirt and U. Maurer. Complete characteri-
zation of adversaries tolerable in general multi-
party computations. In Proc. ACM PODC’97,
pages 25-34, 1997.

M. Karchmer and A. Wigderson. On span
programs. In Proceedings of the FEighth An-
nual Structure in Complexity Theory Confer-
ence, pages 102-111, San Diego, California, 18—
21 May 1993. IEEE Computer Society Press.

10

[16] T. Rabin and M. Ben-Or. Verifiable secret shar-

ing and multiparty protocols with honest ma-
jority (extended abstract). In Proceedings of the
Twenty First Annual ACM Symposium on The-
ory of Computing, pages 73—-85, Seattle, Wash-
ington, 15-17 May 1989.

